
QUBES OS
Joanna Rutkowska

Invisible Things Lab

Qubes OS

• A reasonably secure desktop OS

• Security by Compartmentalization

• Qubes != Hypervisor/VMM (Qubes is a user of a VMM, presently Xen)

• Qubes != Linux Distro

WHY?

Because we need secure client systems

desktop
laptop

tablet

phone

We really need secure CLIENT systems

• Client systems are our Eyes, Ears, and Fingers!

• Nothing works when the client system is compromised

• Crypto

• (2-factor) authentication

• VDI/thin terminals (“secure cloud” not secure)

Present client systems are... insecure

Problems with current (desktop) systems

• Attacks coming through (exploited) apps (Web browser, PDF readers, etc)

• Attacks coming from (malicious) apps (Spyware, Backdoors, etc)

• Attacks coming through (compromised) USB devices

• Attacks coming through networking stacks (DHCP client, WiFi driver/stacks)

• Attacks coming through (malformed) FS/Volume Metadata (USB Storage, CDs)

• Lack of GUI isolation (sniffing content & clipboard, sniffing & spoofing keystrokes)

Desktop systems != server systems

Monolithic systems are hard to secure

(especially desktop systems!)

Monolithic kernel is bad for security

• WiFi & NIC & BT drivers & stacks

• USB drivers & stacks

• Filesystem modules & other volume processing code

• All the various APIs (e.g. debug, VFS, sockets API, etc)

• Why should all these be part of TCB?

“Monolithic” is not only about the kernel...

Monolithism beyond kernel

• GUI server (Xorg)

• Various system services

• Network Manager and other D-Bus endpoints

• udev services (e.g. block device mounting)

• CUPS, desktop indexing, etc

• Not only root considered as “TCB” from user-data point of view

• e.g. “root-less” Xorg not a big deal, really

Monolithic means: bloated, complex, difficult to

understand, and manage

HOW?

Security by Compartmentalization

USB

Virtualization?

• Yes, we use virtualization (VMs) to isolate domains from each other...

• But why would VMs provide any better isolation than OS processes?

• Is there anything wrong with x86 good old MMU/page/ring separation?

• “Solving” problems by adding another layer of abstraction?

What so special about Virtualization?

• It allows to REDUCE the interfaces (VM-VM & VM-TCB)...

• ... and preserve compatibility with LEGACY apps & drivers at the same time

But before we get too excited...

VM<->hypervisor is not the only interface

that is security critical...

Strong isolation “by virtualization”...

Complex
input

processing
code

malware

VM1 VM2

complex protocol

Boom!

... not anymore!

Lesson:

• Don’t get too excited about “hardware virtualization” isolation

• Virtualization nothing magic, offers little more than traditional MMU

isolation

• (Except for IOMMU, but that’s for devices, more later)

• Be careful about inter-VM interfaces and code that handles it!

Ask your hypervisor vendor if/how they DO:

• Device emulation (is qemu part of TCB?)

• Networking virtualization (is net backend part of TCB?)

• Storage virtualization (protocols used, any fancy & complex features?)

• USB virtualization (Is USB backend part of TCB?)

• GUI virtualization (also OpenGL/DirectX/GPU backend complexity?)

• Inter-VM communication framework?

• Inter-VM file & clipboard copy?

“Virtualization gold rush” brought some useful new h/w

technology though...

IOMMU (AKA Intel VT-d)

• Allows for truly de-privileged driver domains (Xen pioneer in using it)

• We can have NetVM, UsbVM :)

• BTW, microkernels without IOMMU made no sense from security point of view.

NetVM

• Ever used WiFi in an airport lounge or hotel?

• Ever wondered if your WiFi driver, stack or DHCP client could be exploited?

• Remember Bashocalypse?

• How about sandboxing all these components?

• This is what a NetVM is about

USBVM

• How much code involved in processing when plugging in a USB device?

• BadUSB?

• UsbVM can sandbox all the USB drivers and stacks

• Then we can carefully export select devices to other AppVMs

Monolithic system Powered-down

“Airgaps”

Tradeoff between

usability & security?

STATUS

Qubes OS Releases

• Qubes OS R1

• 2010-2012

• Qubes OS R2 (HVM & Windows support, gazillion other features)

• 2012-2014

• Qubes OS R3 (Hypervisor Abstraction Layer, UX improvements, H/W compat)

• 2013-

Qubes R2 implements everything we talked about so far

(plus more!)

qubes-os.org

Use of Linux (and other OSes)

• Currently default template based on Fedora 20

• Debian and ArchLinux templates also available (community contribs)

• Also our Dom0 based on Fedora 20

• But this mostly irrelevant to the user, as no user apps or data are in Dom0

• (Think about Dom0 as of a thin and dumb terminal to work with AppVMs)

• Windows 7-based templates also supported

• User must install Windows and provide licensing keys though

Qubes as a platform
for secure/privacy-oriented Apps

• Integration with Tor

• TorVM since 2012

• Currently on-going work to fully integrate Whonix

• Secure email

• Open attachments in Disposable VMs

• Split GPG to protect user private keys

• PDF converter (make PDFs trusted)

• Secure networking

• Isolated VPN VMs

• More coming!

Qubes OS R3 (“Odyssey”)

• Hypervisor Abstraction Layer (HAL)

• Don’t like Xen?

• No problem, use KVM, LXC, MS Hyper-V, [some academic u-kernel/hypervisor]

• Allows for security-performance-compatibility tradeoffs

• Reworked architecture

• More modular, even more decomposed

• GUI domain != Admin domain (planned)

• Qubes Admin API: semi-untrusted remote management VM(s) (planned)

427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494

QUBES-OS.ORG

427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494

MASTER KEY FINGERPRINT

THANKS!

